Tetrahedron Letters,Vol.25,No.38,pp 4217-4218,1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

NEW SYNTHESIS OF 1,2-BISMETHYLENECYCLOBUTANES BY [2+2] CYCLOADDITION REACTION OF 1,1-DIPHENYL-4,4-BIS(TRIFLUOROMETHYL)-BUTATRIENE WITH ELECTRON-RICH ALKENES

Hans Gotthardt and Rüdiger Jung

Lehrstuhl für Organische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, D-5600 Wuppertal 1, Federal Republic of Germany

<u>Abstract</u>: The title compound <u>1</u> undergoes thermal $\begin{bmatrix} 2\\ \pi s + \pi s \end{bmatrix}$ cycloaddition reactions with 1,1-dimethoxyethylene or enamines to produce 1,2-bismethylenecyclobutanes of type 3.

Butatrienes display an interesting position-selective behavior towards cycloaddition reactions. For example, recently it has been established that several substituted butatrienes react with 1,3 dipoles like diazomethane¹ or 1,3-dithiolylium-4-olates^{2,3} at one of the terminal double bonds exclusively and not at the central one. In connection with this study, we wish to report preliminary results on [2+2] cycloaddition reactions which position-specifically take place at the central double bond of the title butatriene. To our knowledge there is no report on thermal [2+2] cycloaddition reactions of butatrienes to CC double bonds except photochemical dimerization of tetraarylbutatrienes⁴.

As we now found, the reaction of 1,1-diphenyl-4,4-bis(trifluoromethyl)butatriene⁵ (<u>1</u>) in the presence of excess 1,1-dimethoxyethylene (<u>2a</u>) at 100-110^oC proceeds with regiospecific formation of the 1,2-bismethylenecyclobutane derivative <u>3a</u> in 63% yield as pale yellow needles (table 1).

Table 1.	1,2-Bismethylenecyclobutanes	3	from	1	and	2	
	· • •			_		_	

<u>2,3</u>	R ¹	R ²	R ³	3		
				yield [%] ^a	mp. [°C]	
<u>a</u>	Н	Сн ₃ 0	СН30	63	134.5-135.5	
<u>b</u>	Н	(CH ₃) ₂ N	(CH ₃) ₂ N	54	>158 ^b	
<u>c</u>	- (CH) ₃ -	morpholino	69	152-153	
<u>d</u>	– (CH	2 ³ 4	morpholino	68	154–155 ^b	

a) Analytically pure. b) dec.

4218

The absence of an allenic infrared vibration and of an allenic carbon in the ¹³C NMR spectrum as well as the following spectroscopic data are consistent with the constitution <u>3a</u>: IR, 1662, 1649 cm⁻¹ (C=C); ¹H NMR (C₆D₆), δ 2.93 (s, 2 CH₃O), 3.03 (mc, CH₂), 6.93-7.50 (m, 2 C₆H₅); ¹⁹F NMR (C₆D₆), δ -58.42 (qt, ⁴J_{FF} = 7.34 Hz, ⁵J_{HF} = 2.51 Hz, CF₃), -62.05 (qt, ⁴J_{FF} = 7.34 Hz, ⁵J_{HF} = 1.66 Hz, CF₃); MS, *m/e* 428 (38%, M⁺). On acid catalyzed hydrolysis, <u>3a</u> is converted to the cyclobutanone derivative <u>4</u> in 64% yield (mp. 143-145°C dec; IR, 1758 cm⁻¹ (C=O); MS, *m/e* 382 (100%, M⁺)).

In a similar way, <u>1</u> combines with the enamines <u>2b-d</u> even at 20-100^OC to produce the 1,2bismethylenecyclobutane derivatives <u>3b-d</u> of table 1. Their constitutions are also in agreement with elemental analyses and spectroscopic data.

Furthermore, the solvent influence on the cycloaddition rate constant is relatively small as evidenced by k(acetonitrile)/k(hexane) = 208 for the reaction of <u>1</u> with 1-morpholinocyclohexene (45^oC). Since this is a very much smaller solvent dependence than reported for the cycloaddition reaction of tetracyanoethylene with enol ethers involving a zwitterionic intermediate, where k(acetonitrile)/k(cyclohexane) values of up to 29 000 have been found⁶, we interpret our reactions as a concerted cycloaddition. In principle, this concerted [2+2] cycloaddition reaction can mechanistically proceed either as a $[\pi^2 + \pi^2_a]$ process at the central isolated CC double bond of <u>1</u>, or as a $[\pi^2 + \pi^2_s]$ one involving the central carbon atoms of the 1,3-diene system in <u>1</u>, followed by 90° rotations of the terminal carbons. Because, the frontier atomic orbital coefficients at the carbons of the central isolated CC double bond of <u>1</u> are zero, we prefer the above-mentioned concerted $[\pi^2 + \pi^2_s]$ process. - Further studies are in progress.

This work was supported by the Fonds der Chemischen Industrie.

REFERENCES

- 1. L. Vo-Quang, P. Battioni and Y. Vo-Quang, Tetrahedron 36, 1331 (1980).
- 2. Diplomwork R. Jung, Univ. Wuppertal 1982.
- 3. H. Gotthardt und R. Jung, manuscript in preparation.
- 4. R. O. Uhler, H. Shechter and G. V. D. Tiers, J.Am. Chem. Soc. <u>84</u>, 3397 (1962).
- 5. G. H. Birum and C. N. Matthews, J. Org. Chem. <u>32</u>, 3554 (1967).
- 6. G. Steiner and R. Huisgen, J.Am. Chem. Soc. <u>95</u>, 5056 (1973).

(Received in Germany 7 June 1984)